Generalized characters whose values on non-identity elements are roots of unity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed paths whose steps are roots of unity

We give explicit formulas for the number Un(N) of closed polygonal paths of length N (starting from the origin) whose steps are n roots of unity, as well as asymptotic expressions for these numbers when N → ∞. We also prove that the sequences (Un(N))N≥0 are P -recursive for each fixed n ≥ 1 and leave open the problem of determining the values of N for which the dual sequences (Un(N))n≥1 are P -...

متن کامل

THE q–CHARACTERS AT ROOTS OF UNITY

We consider various specializations of the untwisted quantum affine algebras at roots of unity. We define and study the q–characters of their finite-dimensional representations.

متن کامل

Multiple polylogarithm values at roots of unity

For any positive integer N let μN be the group of the N th roots of unity. In this note we shall study the Q-linear relations among the values of multiple polylogarithms evaluated at μN . We show that the standard relations considered by Racinet do not provide all the possible relations in the following cases: (i) level N = 4, weight w = 3 or 4, and (ii) w = 2, 7 <N < 50, and N is a power of 2 ...

متن کامل

Standard Relations of Multiple Polylogarithm Values at Roots of Unity

Let N be a positive integer. In this paper we shall study the special values of multiple polylogarithms atNth roots of unity, called multiple polylogarithm values (MPVs) of levelN . These objects are generalizations of multiple zeta values and alternating Euler sums, which was studied by Euler, and more recently, many mathematicians and theoretical physicists.. Our primary goal in this paper is...

متن کامل

Which elements of a finite group are non-vanishing?

‎Let $G$ be a finite group‎. ‎An element $gin G$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $chi$ of $G$‎, ‎$chi(g)neq 0$‎. ‎The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$‎, ‎is an undirected graph with‎ ‎vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G‎, ‎ tin T}$‎. ‎Let ${rm nv}(G)$ be the set‎ ‎of all non-vanishi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2011

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2011.02.008